RECLAMATION

Managing Water in the West

Central Valley Project Cost Allocation Study --**Irrigation and Municipal &** Industrial (M&I) Benefits **Public Meeting** August 9, 2013

U.S. Department of the Interior Bureau of Reclamation

CVP-CAS (Central Valley Project Cost Allocation Study)

- Meeting Purpose
 - Project Status
 - Water Supply Benefit Analysis Approach (Irrigation and M&I)
 - Next Steps

CVP-CAS (Central Valley Project Cost Allocation Study)

- Background
 - Cost Allocation Study Purpose and Process
 - http://www.usbr.gov/mp/cvp/cvp-cas/index.html
 - Summary of 5/17/12 Meeting
 - Water Supply Modeling Analysis Approach

CVP-CAS Schedule

CVP-CAS Schedule Legend

CVP-CAS Historic EV Summary

Water Supply Benefit Analysis Approach

- Three Water Supply Benefit Project Purposes:
 - Irrigation
 - Municipal & Industrial (M&I)

For each water supply project purpose, the general annual economic benefit estimation approach involves multiplying:

- Value per acre foot (AF) *
- Annual Water Deliveries (AF)

CalSim Input and Economic Analysis

- CalSim Hydrology Modeling
 - BOR Hydrologist working with Central Valley Operations
 Office
 - Includes Biological Opinions
- Economic Analysis
 - Irrigation Deliveries
 - M&I Deliveries

Benefits (Future and Historic) and Justifiable Expenditure

- Justifiable Expenditure:
 - One step of the Separable Cost-Remaining Benefits (SCRB) cost allocation methodology.
 - Represents the maximum amount to be allocated to each project purpose.
 - Calculated as the lesser of the multi-purpose project benefits or single-purpose project costs for each project purpose.

Future Benefits and Justifiable Expenditure

 If future benefits are greater than single-purpose costs, then the justifiable expenditure is equal to the single-purpose costs. Additional benefit analysis is not necessary.

	Water Supply	
Allocation	Irrigation	M&I
Future Benefits	\$80	\$50
Historic Benefits		
Estimated SPA Costs	\$60	\$40
Justifiable Expenditure	\$60	\$40

Future and Historic Benefits and Justifiable Expenditure

 If future benefits are less than single-purpose costs, historic benefits are estimated & added to future benefits before comparing to single-purpose costs to determine justifiable expenditure.

	Water Supply	
Allocation	Irrigation	M&I
Future Benefits	\$40	\$30
Historic Benefits	\$10	\$20
Total Benefits	\$50	\$50
Estimated SPA Costs	\$60	\$40
Justifiable Expenditure	\$50	\$40

Irrigation Benefits Methodology

- Two Options for Estimating Future Irrigation Benefits:
 - Use SWAP Model to estimate future cropping patterns and irrigation benefit values.
 - Use SWAP Model to estimate future cropping patterns and Farm Budget Tool to estimate irrigation benefit values.

Irrigation Benefit Methodology

Objective: Identify changes in net farm income generated by the CVP from a national perspective

- Two approaches:
 - State Water Agricultural Production Model (SWAP)
 - Reclamation Farm Budget Tool

Estimating Irrigation Benefits

Analytical Process:

- Identify the change in crop acreage "with" and "without" the CVP.
- Use SWAP Model or Farm Budget Tool to measure the changes in per-acre net farm income by crop related to the change in crop acreage.
- Transform the \$/acre benefit value into \$/AF

SWAP Model

- SWAP is a widely accepted basin-level agricultural impact model for the Central Valley of California.
- Purpose: to dynamically estimate the change in irrigated acreage for the Central Valley given a change in CVP water deliveries.
- Output: changes in irrigated acreage and net agricultural income.

Reclamation Farm Budget Tool

- Reclamation's Farm Budget Tool is a spreadsheet application that allows the user to develop and analyze farm-level crop enterprise budgets in accordance with Reclamation Policy.
- Purpose: to measure the change in net farm income by crop given a change in acreage.
- Output: net farm income for each crop included in the analysis.

Irrigation Benefit Estimation Considerations

- SWAP Interface with CALSIM
- SWAP is well-accepted model
- SWAP provides faster turnaround on analyses
- SWAP used for future benefits only
- Farm Budget Tool can be used for historic and future benefits
 - However, future cropping patterns must be projected.

Objective: Identify value of M&I water supply:

- Two Approaches:
 - Demand model to estimate the value of water for M&I purposes
 - Cost based approaches (i.e., cost minimization and forgone use)

The Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies (P&G's) indicate the general measurement standard of value is willingness to pay (WTP).

- The P&G's also indicate that other approaches can be used to estimate benefits when market based measures of WTP are not possible.
- One alternative method includes cost based approaches.

- M&I benefits as measured by consumers WTP can be estimated through the use of previously developed M&I demand models.
- M&I benefits using a cost based/forgone use approach can be estimated using models such as the Least Cost Planning Simulation Model (LCPSIM) and others.

Demand Model Based Approach

- Statistical models have previously been developed by BOR using data from 11 water agencies in California and Nevada.
- Additional models will be run to include only California data.
- An economic value per acre foot will be obtained from these models, representing an average benefit.

Cost Based - Forgone Use Approach

- If the demand model approach is not used, a least cost modeling approach (e.g. LCPSIM) would be used.
- This approach is based on management strategies that minimize costs given regional demand and supplies.
 - Shortage losses are measured in terms of forgone use or opportunity cost.

M&I Benefit Estimation Considerations

- The demand model approach provides estimates of WTP.
- The demand model approach based on M&I use provides a relatively high estimate of benefits compared to a more conservative value estimated using a cost of service or forgone use approach.

M&I Benefit Estimation Considerations

Previous California surface storage planning studies have primarily used the cost based – forgone use (LCPSIM) approach.

CVP-CAS Next Steps

- Public Document to Address Comments and Responses
- Continued Refinement of Process and Schedule
- Upcoming Public Meeting
 - November 15, 2013

CVP-CAS

- http://www.usbr.gov/mp/cvp/cvp-cas/index.html
- Brooke Miller-Levy, Project Manager

